3462. [2009: 327, 329] Proposed by Sotiris Louridas, Aegaleo, Greece.

Let x, y, and z be positive real numbers such that

$$\left(x^3+z^3-y^3\right)\left(y^3+x^3-z^3\right)\left(z^3+y^3-x^3\right) \,>\, 0$$
 .

Prove that

$$\begin{split} \left(x^3+y^3+z^3+3xyz\right) \prod_{\text{cyclic}} \left(x^3+y^3-z^3+xyz\right) \\ & \leq \ 3 \prod_{\text{cyclic}} \sqrt[3]{x^4 \left(x^2+yz\right)^4} \,. \end{split}$$

Composite of similar solutions by Arkady Alt, San Jose, CA, USA, and Thanos Magkos, 3rd High School of Kozani, Kozani, Greece, modified by the editor.

First note that the hypotheses imply that each of the terms $x^3+y^3-z^3$, $y^3+z^3-x^3$, and $z^3+x^3-y^3$ is positive, since if two of them are negative, say $x^3+y^3-z^3<0$ and $y^3+z^3-x^3<0$, then we would have $2y^3<0$, or y<0, a contradiction. Hence, if we set $a=x^3+3xyz$, $b=y^3+3xyz$, and $c=z^3+3xyz$, then $a+b-c=x^3+y^3-z^3+3xyz>0$, which implies that a+b>c. Similarly, b+c>a and c+a>b. Therefore, since a,b, and c are positive, they are the side lengths of a triangle ABC. In this context, the inequality to be proved is now rewritten as

$$(a+b+c)(a+b-c)(b+c-a)(c+a-b) \leq 3\sqrt[3]{a^4b^4c^4}.$$
 (1)

Let s, R, and F denote the semiperimeter, the circumradius, and the area of triangle ABC. The following formulas are well known:

$$F = \sqrt{s(s-a)(s-b)(s-c)};$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R;$$

$$abc = 4RF.$$

Hence, inequality (1) is equivalent to each of the following:

$$\begin{array}{rcl} 16s(s-a)(s-b)(s-c) & \leq & 3\sqrt[3]{(4RF)^4}\,, \\ & 16^3F^6 & \leq & 3^3\cdot 4^4\cdot R^4\cdot F^4\,, \\ abc & = & 4RF & \leq & 3\sqrt{3}R^3\,, \\ 8(\sin A\sin B\sin C)R^3 & \leq & 3\sqrt{3}R^3\,, \\ \sin A\sin B\sin C & \leq & \frac{3\sqrt{3}}{8}\,, \end{array}$$

and it is well known that the last inequality is true [Ed: c.f. Formula 2.8 on p. 20 of O. Bottema etal., Geometric Inequalities, Wolters-Noordhoff Publ., Groningen, 1969.]

Thus, inequality (1) is established, and the problem is solved.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; OLIVER GEUPEL, Brühl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and the proposer. There was one incorrect solution submitted.

Crux Mathematicorum with Mathematical Mayhem

Former Editors / Anciens Rédacteurs: Bruce L.R. Shawyer, James E. Totten

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L.R. Shawyer

Mathematical Mayhem

Founding Editors / Rédacteurs-fondateurs: Patrick Surry & Ravi Vakil Former Editors / Anciens Rédacteurs: Philip Jong, Jeff Higham, J.P. Grossman, Andre Chang, Naoki Sato, Cyrus Hsia, Shawn Godin, Jeff Hooper